医站点医维基

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2203|回复: 0

[体液检验] 粪便微RNA检测用于结直肠癌早期筛查的研究

[复制链接]

87

主题

0

回帖

289

积分

中级会员

积分
289
发表于 2017-3-16 01:39:11 | 显示全部楼层 |阅读模式
作者:甄潮辉1,李富荣2,余小舫1
单位:1.暨南大学第二临床医学院(深圳市人民医院)肝胆外科,2.暨南大学第二临床医学院老年医学研究所


《2012年中国肿瘤登记年报》中的数据显示,我国新增癌症患者312万,死亡270万,癌症正以超越心脑血管疾病的发病趋势而成为第一死亡原因[1]。在我国城市地区,结直肠癌(colorectal cancer)的发病率位居恶性肿瘤的第3位,在我国农村地区也上升较快,目前已位居第5位[1]。结直肠癌在恶性肿瘤发病和死亡构成中分别占10.56%和7.80%,分别列第3和5位[1]。临床强调早发现、早诊断和早治疗,但目前影像学技术对结直肠癌的早期诊断有不足之处,如MRI、CT和正电子发射计算机断层显像-计算机断层扫描(positron emission tomography-computed tomography, PET-CT)检查费用均较为昂贵,需在肿瘤组织发展到一定程度才能有影像学变化,而且不能确诊;气钡双重对比造影X线摄片检查、经直肠腔内超声和内镜检查会有一定痛苦,患者往往拒绝。此外,血清肿瘤标志物和粪便隐血试验的敏感性和特异性均不高。近年来研究发现,miRNA与结直肠癌的发生、发展密切相关。因为结直肠癌细胞脱落后可随粪便排出,所以检测粪便miRNA可能成为早期筛查和诊断结直肠癌的新方法。现就miRNA与结直肠癌的相关性,以及检测粪便miRNA在诊断和筛查研究进展方面做一综述。

一、miRNA与结直肠癌的相关性

具有癌基因功能的miRNA的过表达与发挥抑癌基因功能的miRNA的表达下降或缺失都可能诱发肿瘤。具有癌基因功能的miRNA可通过下调p53、腺瘤性息肉病基因(adenomatous polyposis coli,APC)、磷酸酶基因(phosphatase and tensin homolog,PTEN)和圆柱瘤基因(cylindromatosis,CYLD)等抑癌基因或Smad4分子、RAS p21蛋白活化子1(RAS p21 protein activator 1,RASA1)等分子产物阻碍结直肠上皮细胞凋亡[2,3]。发挥抑癌基因功能的miRNA可通过抑制c-myc基因或下调沉默信息调节因子1(sirtuin type 1,SIRT1)、胰岛素受体底物1(insulin receptor substrate 1,IRS-1)、E2F家族、Bcl-2蛋白、细胞周期蛋白E2(cyclin E2)、促肝细胞再生因子1(phosphatases of regenerating liver-1,PRL-1)和周期蛋白依赖性激酶4/6(cyclin-dependent kinase 4/6,CDK4/6)等分子产物,来减少结直肠上皮细胞增殖或诱导细胞凋亡[4,5]。此外,许多miRNA参与肿瘤的侵袭和转移过程,如上皮间质转化(epithelial-mesenchymal transition,EMT)、细胞迁移,以及血管生成的调节。促进转移的miRNA可通过活化Sprouty 2基因,下调紧密连接蛋白-1(claudin-1,CDH1)、抗血管生成蛋白1 (antiangiogenic thrombospondin-1,Tsp1)、结缔组织生长因子(connective tissue growth factor,CTGF)或上调酪氨酸激酶受体、促锌指结合蛋白(zinc finger-enhancer binding protein,ZEB)、波形蛋白(vimentin)等分子产物,以提高结直肠癌细胞的侵袭和迁移能力[6,7]。抑制转移的miRNA则通过静默Hox基因家族(homeobox genes)、CDH1基因,或下调程序性凋亡因子4(programmed cell death 4,PDCD4)、缺氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)等分子产物,抑制结直肠癌细胞的EMT、细胞迁移和血管生成[8,9]。

此外发现,部分miRNA的异常表达水平与病理分期、术后复发率、无瘤生存率或总生存率存在相关关系,可能影响患者的预后。有研究指出,miRNA可通过上调或下调结直肠癌细胞对放射疗法和化学疗法的敏感性而影响治疗效果,如miRNA-143可易化5-氟尿嘧啶引起的结直肠癌细胞死亡效应,而miRNA-192和miRNA-215则起相反作用[10];miRNA-133a通过上调p53蛋白的表达和p21的转录,提高结直肠癌细胞对阿霉素和奥沙利铂的敏感性[11]。此外,Wellner等[12]研究发现,miRNA可通过作用于性别决定区域Y基因2(sex determining region Y-box 2, Sox2)、Kruppel样转录因子2(Kruppel-like factor 2, Klf2)等靶基因,以促使结直肠癌细胞保持干细胞样特性,这可能与结直肠癌的疾病进展、术后复发等预后有关。

二、粪便miRNA检测在结直肠癌早期筛查中的临床价值

研究表明,结直肠癌患者的粪便中有肿瘤特异性miRNA存在,能够被稳定地检测并且提示肿瘤状态[13]。目前,粪便miRNA提取和定量分析方法已被优化,且检测简单、重复性强,提示粪便miRNA可作为结直肠癌筛查标志物。此外,多项研究发现,部分miRNA表达水平与结直肠癌的病理分期存在相关关系,Ⅰ、Ⅱ期与Ⅲ、Ⅳ期的表达水平存在显著差异,如miRNA-21、miRNA-31、miRNA-99b等上调表达的miRNA,其表达水平与病理分期呈正相关;miRNA-125a、miRNA-133a、miRNA-148a、miRNA-152等下调表达的miRNA,其表达水平与病理分期呈负相关[14,15,16]。这都表明,粪便miRNA有可能成为结直肠癌早期筛查的新型标志物。

在粪便、血清和组织中均异常表达的miRNA有miRNA-21、miRNA-92a、miRNA-143和miRNA-145。Wu等[17]2012年的研究发现,粪便miRNA-21鉴别结直肠癌患者与健康对照者的敏感度和特异度分别为55.7%和73.3%(Koga等[18]2010年的研究发现,其敏感度仅为14.7%,特异度为91.6%),而鉴别结直肠息肉患者的敏感度和特异度分别为43.9%和73.3%;粪便miRNA-92a鉴别结直肠癌患者与健康对照者的敏感度和特异度分别为71.6%和73.3%,而鉴别结直肠息肉患者的敏感度和特异度分别为56.1%和73.3%。研究表明,miRNA-21与病理分期呈正相关,与无病生存期呈负相关,被认为是适用于不同种族人群结直肠癌的强有力的预后标志物,并对Ⅱ期结直肠癌患者具有重要意义,可在癌症早期识别高风险的疾病进展[19,20]。粪便miRNA-92a鉴别结直肠癌的敏感度和特异度均超过70%,这与血浆miRNA-92a的早期诊断作用相似[21]。miRNA-143和miRNA-145在粪便、肿瘤组织和血清中表达明显下降[22],与病理分期呈负相关,提示miRNA-143和miRNA-145也可作为诊断结直肠癌的潜在生物学标志物。

在粪便和肿瘤组织(或)血清中提及异常表达的miRNA有miRNA-106a、miRNA-135b和miRNA-144。Koga等[23]2013年的研究发现,粪便miRNA-106a诊断结直肠癌的敏感度和特异度分别为34.2%和97.2%,结合粪便隐血试验可使敏感度和特异度分别达到70.9%和96.3%。此外,link等[24]的研究表明,粪便miRNA-106a在结直肠癌和结直肠腺瘤患者中均明显上调。结直肠腺瘤患者粪便中miRNA-106a表达量较结直肠癌患者高,且与TNM分期呈负相关。Wu等[25]2014年的研究提出,结直肠癌和结直肠腺瘤患者粪便中miRNA-135b呈高表达,敏感度分别达到78%和73%(Koga等[18]2010年的研究发现,其敏感度和特异度分别为45.7%和95%)。多中心研究结果提示,miRNA-135b与无病生存率密切相关[26]。Kalimutho等[27]研究发现,miRNA-144稳定存在于结直肠癌患者粪便中,且呈高表达,其敏感度和特异度分别为74%和87%。Iwaya等[28]提出,miRNA-144是一个有意义的预后指标,与结直肠癌预后密切相关。

三、展望

miRNA是一种稳定性较好的与结直肠癌发生和发展关系密切的小分子RNA。粪便易收集,检查方式易被人接受,故粪便miRNA是结直肠癌早期诊断的理想肿瘤标志物。粪便中miRNA-21、miRNA-92a、miRNA-106a、miRNA-135b、miRNA-144、miRNA-143和miRNA-145异常表达,单独检测或组合检测均有较好的敏感性和特异性,有望用于结直肠癌的早期筛查和诊断,进而改善患者预后。但目前对miRNA异常表达的机制尚不清楚,且不同研究报道存在差异,需进一步的试验以验证。另外,miRNA的检测方法各有利弊,缺乏统一的检测标准和严格的质控标准。这些问题都有待将来进一步的研究。

参考文献
[1]赫捷,陈万青.2012中国肿瘤登记年报[M].北京:军事医学科学出版社,2012: 2–4.
[2]XiongB, ChengY, MaL,et al. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells[J]. Int J Oncol, 2013,42(1):219–228.
[3]SunD, YuF, MaY, et al.MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1)[J]. J Biol Chem, 2013,288(13):9508–9518.
[4]YinY, YanZP, LuNN, et al. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1[J]. Biochim Biophys Acta,2013,1829(2):239–247.
[5]MaQ, WangX, LiZ,et al. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/surviving signaling pathway[J]. oncol Rep, 2013,29(4):1652–1658.
[6]ZhangGJ, XiaoHX, TianHP,et al. Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression[J]. Int J Mol Med,2013,31(6):1375–1380.
[7]ShibutaniM, NodaE, MaedaK, et al. Low expression of claudin-1 and presence of poorly-differentiated tumor clusters correlate with poor prognosis in colorectal cancer[J]. Anticancer Res, 2013,33(8): 3301–3306.
[8]MaL, YoungJ, PrabhalaH, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis[J]. Nat Cell Biol, 2010,12(3):247–256.
[9]YamakuchiM, YagiS, ItoT, et al. MicroRNA-22 regulates hypoxia signaling in colon cancer cells[J/OL]. PLoS One, 2011,6(5):e20291 [2011-05-23]. http:∥journals.plos.org/plosone/article?id=10.1371/journal.pone.0020291.
[10]BoniV, BitarteN, CristobalI,et al. miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation[J]. Mol Cancer Ther, 2010,9(8):2265–2275.
[11]DongY, ZhaoJ, WuCW, et al. Tumor suppressor functions of miR-133a in colorectal cancer[J]. Mol Cancer Res, 2013,11(9):1051–1060.
[12]WellnerU, SchubertJ, BurkUC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nat Cell Biol, 2009,11(12):1487–1495.
[13]WuWK, LawPT, LeeCW,et al. MicroRNA in colorectal cancer: from benchtop to bedside[J]. Carcinogenesis, 2011,32(3):247–253.
[14]ArndtGM, DosseyL, CullenLM,et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer[J/OL]. BMC Cancer,2009,9:374 [2009-10-20]. http:∥www.biomedcentral.com/1471-2407/9/374.
[15]WangCJ, ZhouZG, WangL,et al. Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer[J]. Dis Markers, 2009,26(1):27–34.
[16]ChenY, SongY, WangZ,et al. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance[J]. J Gastrointest Surg, 2010,14(7):1170–1179.
[17]WuCW, NgSS, DongYJ, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps[J]. Gut,2012,61(5):739–745.
[18]KogaY, YasunagaM, TakahashiA,et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening[J]. Cancer Prev Res (Phila), 2010,3(11):1435–1442.
[19]NielsenBS, JørgensenS, FogJU,et al. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage Ⅱ colon cancer patients[J]. Clin Exp metastasis, 2011,28(1):27–38.
[20]LiuGH, ZhouZG, ChenR, et al. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer[J]. Tumour Biol, 2013, 34(4):2175–2181.
[21]HuangZ, HuangD, NiS,et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer[J]. Int J Cancer, 2010, 127(1):118–126.
[22]LiJM, ZhaoRH, LiST, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer[J]. Saudi Med J, 2012,33(1):24–29.
[23]KogaY, YamazakiN, YamamotoY,et al. Fecal miR-106a is a useful marker for colorectal cancer patients with false-negative results in immunochemical fecal occult blood test[J]. Cancer Epidemiol Biomarkers Prev, 2013,22(10):1844–1852.
[24]linkA, BalaguerF, ShenY, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening[J]. Cancer Epidemiol Biomarkers Prev, 2010,19(7):1766–1774.
[25]WuCW, NgSC, DongY, et al. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma[J]. Clin Cancer Res, 2014,20(11):2994–3002.
[26]GaedckeJ, GradeM, CampsJ, et al. The rectal cancer microRNAome–microRNA expression in rectal cancer and matched normal mucosa[J]. Clin Cancer Res, 2012,18(18):4919–4930.
[27]KalimuthoM, Del Vecchio BlancoG, Di CeciliaS,et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer[J]. J Gastroenterol, 2011,46(12):1391–1402.
[28]IwayaT, YokoboriT, NishidaN,et al. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway[J]. Carcinogenesis, 2012,33(12):2391–2397.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|关于我们|医维基|网站地图|Archiver|手机版|医疗之家 ( 沪ICP备2023001278号-1 )  

GMT+8, 2024-5-21 20:15 , Processed in 0.223210 second(s), 27 queries .

Designed by Medical BBS

快速回复 返回顶部 返回列表